Abstract

Nanocrystalline silicon and silicon–germanium alloys are promising thermoelectric (TE) materials that have achieved substantially improved figure of merits compared to their bulk counterparts. This enhancement is typically attributed to a reduction in lattice thermal conductivity by phonon scattering at grain boundaries. However, further improvements are difficult to achieve because grain boundary scattering is poorly understood, with recent experimental observations suggesting that the phonon transmissivity may depend on phonon frequency rather than being constant as in the commonly used gray model. Here, we examine the impact of frequency-dependent grain boundary scattering in nanocrystalline silicon and silicon–germanium alloys in a realistic 3D geometry using frequency-dependent variance-reduced Monte Carlo simulations. We find that the grain boundary may not be as effective as predicted by the gray model in scattering certain phonons, with a substantial amount of heat being carried by low frequency phonons with mean free paths longer than the grain size. Our result will help guide the design of more efficient TEs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.