Abstract

Although cardiomyocyte (CM) apoptosis has been well described in both in vitro and in vivo models of ischemic heart disease, the intracellular pathways leading to CM death have not been fully characterized. To define the role of death receptor signaling in CM apoptosis, we constructed recombinant adenoviral vectors carrying wild-type (wt) or dominant negative (dn) forms of the death receptor adaptor protein FADD (Fas-associated death domain protein) and used these vectors to transduce rat neonatal CMs in models of hypoxia- and serum deprivation (SD)-induced apoptosis. The combination of SD and hypoxia induced rapid activation of caspase-3 and -8 as well as DNA fragmentation, reaching a plateau within 4-8 h. Adenoviral expression of FADD-dn inhibited caspase-8 activation as well as hypoxia/SD-induced apoptosis at 24 h in an moi (multiplicity of infection)-dependent manner. In contrast, adenoviral expression of FADD-wt increased apoptosis and caspase-3 activity in CMs under both normoxic and hypoxic conditions. Surprisingly, FADD-dn, as well as the specific caspase-8 inhibitor benzyloxycarbonyl-IETD-fluoromethylketone also inhibited the activation of caspase-9 and -3 in CMs subjected to hypoxia/SD. These data suggest a primary role for FADD/caspase-8 signaling that is necessary and sufficient for apoptosis of CMs subjected to hypoxia/SD.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.