Abstract

Hydrolysis of closely related compounds show how subtle structural differences markedly change reaction mechanisms. While in the hydrolysis of 3-acetoxy-2-naphthoic acid (3AC2NA) the reacting groups rotate freely, favoring intramolecular general base catalysis, the 1-acetoxy-2-naphthoic acid (1AC2NA) isomer is caged in an energy wall that freezes a conformation suitable for intramolecular nucleophilic attack, in contrast to the results expected for reactions governed largely by electronic effects. The results highlight the importance of the dynamics of equilibrium fluctuations between most stable conformers in the control of the reaction mechanism, (i) promoting the nucleophilic attack in 1AC2NA by allowing the most stable conformers to equilibrate only via rotation in a direction that intercepts the reaction coordinate and (ii) favoring a general base-catalyzed water attack in 3AC2NA by favoring equilibration via rotation that allows inclusion of a water molecule in a proper position for reaction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call