Abstract

Although capsaicin has been shown to activate certain neuronal groups in the hypothalamus and amygdala, the neurotransmitters involved and the exact mechanism of action are not clearly understood at present. The aim of this study was to examine the hypothesis that the effect of capsaicin in the rat hypothalamus and amygdala primarily involves direct activation of the endogenous nitric oxide synthase (NOS) neurons responsible for the synthesis of nitric oxide (NO). Subcutaneous capsaicin injection in male rats, compared with vehicle, caused a significant increase in Fos expression in the paraventricular nucleus (PVN), supraoptic nucleus (SON), and medial and cortical amygdala. The expression of nicotinamide adenine dinucleotide phosphate diaphorase, a histochemical marker for NOS, was also increased in these brain areas in addition to the periventricular and lateral hypothalamic area and central amygdaloid nucleus. Also, capsaicin significantly increased the expression of neuronal NOS messenger RNA and protein in the PVN, SON, and medial amygdala as demonstrated by in situ hybridization and immunohistochemistry, respectively. A higher proportion of the NOS neurons in the PVN, periventricular region, SON and amygdala showed Fos expression in response to capsaicin than vehicle injection. There was little, if any, Fos activation in the NOS-positive neurons in the lateral hypothalamic area. The capsaicin-induced activation of the hypothalamic PVN and SON neurons and the medial amygdaloid nucleus was attenuated in the NOS inhibitor N(omega)-nitro-L-arginine methyl ester (L-NAME) -pretreated animals in comparison with the inactive enantiomer D-NAME. These observations indicate that activation of the endogenous NOS system and production of NO constitute a major pathway through which capsaicin exerts its effect within the hypothalamus and amygdala.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call