Abstract

This paper reports an investigation on human osteoblast-like cells (SaOs-2) seeded onto pure hydroxyapatite (HA) and silicon-substituted HA (SiHA) tablets under static and dynamic culture conditions. The biological characterizations were conducted in classical static conditions in multi-wells plates, and in a perfusion bioreactor that permits continuous circulation of culture medium at 2 mL/h. The morphology, proliferation and differentiation of osteoblastic cells were examined for the two types of samples in the both culture conditions after 1, 3 and 8 days. Under dynamic conditions, cells cultured on SiHA surfaces showed a faster adhesion process and the formation of longer and thinner focal adhesions than in static conditions. The number of cells grown onto both ceramic surfaces was higher in dynamic conditions when compared with static conditions. Moreover, a higher activity of alkaline phosphatase was found for cells seeded under dynamic conditions. Our findings suggest that the application of perfusion culture system on cells cultured on dense substrates is valuable for predicting in vivo behaviour of cells on biomaterials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.