Abstract
BackgroundThe inactivation of tumor suppressor genes (TSGs) by aberrant DNA methylation plays an important role in the development of malignancy. Since this epigenetic change is reversible, it is a potential target for chemotherapeutic intervention using an inhibitor of DNA methylation, such as 5-aza-2'-deoxycytidine (DAC). Although clinical studies show that DAC has activity against hematological malignancies, the optimal dose-schedule of this epigenetic agent still needs to be established.MethodsClonogenic assays were performed on leukemic and tumor cell lines to evaluate the in vitro antineoplastic activity of DAC. The reactivation of TSGs and inhibition of DNA methylation by DAC were investigated by reverse transcriptase-PCR and Line-1 assays. The in vivo antineoplastic activity of DAC administered as an i.v. infusion was evaluated in mice with murine L1210 leukemia by measurement of survival time, and in mice bearing murine EMT6 mammary tumor by excision of tumor after chemotherapy for an in vitro clonogenic assay.ResultsIncreasing the DAC concentration and duration of exposure produced a greater loss of clonogenicity for both human leukemic and tumor cell lines. The reactivation of the TSGs (p57KIP2 in HL-60 leukemic cells and p16CDKN2A in Calu-6 lung carcinoma cells) and the inhibition of global DNA methylation in HL-60 leukemic cells increased with DAC concentration. In mice with L1210 leukemia and in mice bearing EMT6 tumors, the antineoplastic action of DAC also increased with the dose. The plasma level of DAC that produced a very potent antineoplastic effect in mice with leukemia or solid tumors was > 200 ng/ml (> 1 μM).ConclusionWe have shown that intensification of the DAC dose markedly increased its antineoplastic activity in mouse models of cancer. Our data also show that there is a good correlation between the concentrations of DAC that reduce in vitro clonogenicity, reactivate TSGs and inhibit DNA methylation. These results suggest that the antineoplastic action of DAC is related to its epigenetic action. Our observations provide a strong rationale to perform clinical trials using dose intensification of DAC to maximize the chemotherapeutic potential of this epigenetic agent in patients with cancer.
Highlights
The inactivation of tumor suppressor genes (TSGs) by aberrant DNA methylation plays an important role in the development of malignancy
The dose-schedules of DAC used in the clinical studies were very different, and it appears that the optimal dose still needs to be refined in order to fully exploit its chemotherapeutic potential
In order to fully understand the antineoplastic activity of DAC, we evaluated its epigenetic action at different concentrations on human leukemic and tumor cell lines
Summary
The inactivation of tumor suppressor genes (TSGs) by aberrant DNA methylation plays an important role in the development of malignancy. Since this epigenetic change is reversible, it is a potential target for chemotherapeutic intervention using an inhibitor of DNA methylation, such as 5-aza-2'deoxycytidine (DAC). Clinical studies show that DAC has activity against hematological malignancies, the optimal dose-schedule of this epigenetic agent still needs to be established. The inactivation of tumor suppressor genes (TSGs) by epigenetic events, such as aberrant DNA methylation, plays an important role in oncogenesis [1,2]. The dose-schedules of DAC used in the clinical studies were very different, and it appears that the optimal dose still needs to be refined in order to fully exploit its chemotherapeutic potential
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.