Abstract
We studied microRNA gene expression in HeLa cells following exposure for 6 h and 8 days to Co60 gamma rays at a dose of 4 Gy using an approach of large-scale parallel DNA sequencing. We identified 12 microRNAs with aberrant expression which were maintained in cell generations. The analysis of radiation-induced aberrant expression of pre-microRNAs made it possible to assess the importance of nuclear and cytoplasmic stages of microRNA biogenesis for preservation of its aberrant expression. On cell treatment by 5-azacytidine, aberrant expression was maintained only in two microRNAs: miR-21-3p and miR-422a, which demonstrated an increase in expression. Radiation-induced decrease in expression in ten examined microRNAs was dependent on DNA demethylation. At the same time, expression in a microRNA set, which demonstrated inheritable alteration of the expression after gamma-radiation exposure in the untreated cells, was not dependent or was weakly dependent on DNA methylation. The obtained results suggest that ionizing radiation induces aberrant DNA methylation, which affects inherited expression changes in microRNAs in cell generations after exposure to the mutagen.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.