Abstract
Microaeration for biogas desulfurization occurs mainly in the headspace of anaerobic digesters where the biofilm growth is mainly reported; however, no study has been focused on the effect of headspace geometry on microaeration performance. This research evaluates the effect of headspace geometry on biogas flow, subsequent biofilm growth, and the effect of these parameters on microaeration efficiency. This effect was studied in an anaerobic digester with three different headspace configurations. Also, the computational fluid dynamics (CFD) model explained the experimental results. The CFD model developed described the biogas flow in all headspace configurations. It was proven that the modifications of headspace geometry altered biogas flow and avoided biofilm growth on the reactor walls leading to the reactor's protection from the adverse effects of biofilm growth. The mathematical model developed in this work can help design microaerobic digesters or find the best way to implement microaeration into the digesters already built.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.