Abstract

Based on the cluster–core model, we have extended our recent study on neutron-halo structure of light nuclei to investigate the effects of deformations and orientations on the observed and proposed cases of proton-rich light nuclei. The relevance of “hot compact” over “cold elongated” configurations due to orientations is explored along with the possible role of angular momentum effects. The cases of both 1pand 2p-halo nuclei are analyzed in terms of potential energy surfaces calculated as a sum of binding energies, Coulomb repulsion, nuclear proximity attraction and the centrifugal potential for all the possible cluster+core configurations of a nucleus. The halo structures of N and S nuclei are of special interest as they exhibit strong influence of deformations and angular momentum effects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.