Abstract

The interfacial change of HfO2∕Si∕n-GaAs gate stacks after high temperature annealing has been characterized using x-ray photoelectron spectroscopy (XPS), photoluminescence (PL), and capacitance-voltage measurement. The properties of the interface are sensitive to the amount of incorporated oxygen. XPS measurement shows the formation of gallium and arsenic oxides with increasing annealing temperature. A PL emission from the Si interfacial passivation layer was observed after 900°C annealing. With more oxygen incorporation, this PL emission was quenched. The measurement of the interface state density proved the generation of deep traps with too much oxygen incorporation. Depletion-mode metal-oxide-semiconductor field effect transistors using postdeposition annealing at 600°C with and without post-metal-annealing at 900°C have also been fabricated and characterized. Too much oxygen incorporation resulted into the degradation of mobility, subthreshold swing, and transconductance. The interfacial gallium and arsenic oxides might act as deep traps.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.