Abstract

The aim of the present experiments was to test whether adrenal chromaffin cells implanted into the striatum of rats could exert a functional effect through a release of catecholamines. A cell suspension obtained from bovine adrenal medulla was implanted unilaterally into the striatum. The striatal dopaminergic input was extensively destroyed beforehand to preclude the possibility of reinnervation of the striatum by endogenous dopaminergic neurons. The functional influence of the implant was tested through the measurement of drug-induced rotation, while catecholamine release was measured subsequently in the same animals by in vivo electrochemistry. Transplant survival, as shown by the immunohistochemical analysis performed at the end of the in vivo experiments, was highly variable. Surviving chromaffin cells maintained their endocrine morphology and no reinnervation of the host striatum could be detected. Rotation of the animals evoked by apomorphine (0.1 mg/kg, sc) or amphetamine (5.0 mg/kg, ip) following the lesion was left uninfluenced following transplantation, even when a large transplant was recovered. On the other hand, nicotine (0.5 mg/kg, sc) evoked a strong contraversive rotational response in the transplant-bearing animals. This response could not be ascribed to the central effect of substances released peripherally and entering the nervous system through the blood-brain barrier opened by the implantation procedure, as it could not be found in animals bearing implants of other peripheral endocrine tissue, viz, pituitary. The effect of nicotine was not blocked by the pretreatment of the animals with either the opiate antagonist naloxone (2.5 mg/kg, 10 min) or the dopamine receptor blocker pimozide (0.5 mg/kg, 1 h), although the latter pretreatment blocked the amphetamine-evoked rotation. No spontaneous catecholamine release could be detected from the implanted chromaffin cells by in vivo electrochemistry, while treatment with amphetamine or nicotine did evoke a release. The results suggest that the functional effects of such intrastriatal grafts of chromaffin cells, reported in previous studies, cannot be explained by the secretion from the grafted cells of catecholamines into the denervated striatum. On the other hand the results obtained following the pharmacological stimulation of these cells indicate that adrenal grafts can, under suitable conditions, influence the functioning of the host nervous system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call