Abstract
Dynamic changes of gene expressions occur in human endometrial stromal cells (ESCs) during decidualization. CCAAT/enhancer-binding proteinβ (C/EBPβ) regulates the expression of a number of decidualization-related genes. In addition to transcription factors, it is important to know the role of epigenetic mechanisms, such as histone modifications in the regulation of decidualization-related genes. This study investigated the molecular and epigenetic mechanisms by which cAMP up-regulates the expression of IGF-binding protein-1 (IGFBP-1), prolactin (PRL), and manganese superoxide dismutase (Mn-SOD) in ESC. ESCs isolated from proliferative phase endometrium were incubated with cAMP to induce decidualization. IGFBP-1, PRL, and Mn-SOD mRNA expressions were determined by real-time RT-PCR. The C/EBPβ binding and histone modification status (acetylation of histone-H3 lysine-27 [H3K27ac]) in the promoter were examined by chromatin immunoprecipitation assay. Knockdowns of C/EBPβ were performed using the small interfering RNA method. cAMP induced mRNA expressions of IGFBP-1 and PRL accompanied by the increases in both C/EBPβ binding activities and H3K27ac levels in the promoters. The stimulatory effects of cAMP on mRNA levels and H3K27ac levels were completely abolished by C/EBPβ knockdown. cAMP increased Mn-SOD mRNA levels and C/EBPβ binding activities in the enhancer region. C/EBPβ knockdown inhibited Mn-SOD mRNA levels. The H3K27ac levels in the enhancer were high before cAMP stimulus but were not further increased by cAMP and were not inhibited by C/EBPβ knockdown. These results show that C/EBPβ regulates the expression of IGFBP-1 and PRL by altering the histone acetylation status of their promoters but differently regulates Mn-SOD gene expression in human ESC during decidualization.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.