Abstract
Two small (0.22 and 0.48 ha) alpine watersheds in the Sierra Nevada of California were studied during the 1992 and 1993 snowmelt seasons to evaluate the importance of soil properties and processes on chemical concentrations in the discharges from each watershed. Watershed 1 was surveyed as having 26% soil cover, whereas watershed 2 was 10% soil covered. Watershed 2 had greater H+ and nitrogen consumption than watershed 1 but similar cation and sulfate concentrations despite having one fourth the surveyed soil volume per unit area as watershed 1. Daily stream concentrations simulated with the Alpine Hydrochemical Model (AHM) matched the data well, after a systematic model calibration with a subset of the data. We found that the structure of the AHM and the hydrologic parameters developed for the nearby 1.2 km2 Emerald Lake watershed could be applied to these watersheds with only small adjustments; chemical parameters required considerably more adjustment, reflecting a greater degree of chemical versus physical heterogeneity at this scale. Calibration for watershed 2 gave a higher percent base saturation (19 versus 4%) and lower stream urn:x-wiley:01480227:media:wrcr7928:wrcr7928-math-0001 versus 10−2.6 atm) than for watershed 1 and three times the soil reactivity (expected) of a field survey. Areas mapped as exposed bedrock in the catchments apparently contributed cations and alkalinity to stream water to a greater extent than did neighboring areas of soil. Areas of exposed bedrock were a larger nitrogen sink than the adjoining areas of soil. The pH and acid‐neutralizing capacity of surface runoff in both catchments were less sensitive to changes in atmospheric deposition than at the nearby Emerald Lake watershed. This decreased sensitivity was due to (1) a less pronounced ionic pulse, (2) less retention of sulfate in the soil, and (3) greater nitrate retention.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.