Abstract

The multiconfiguration time-dependent Hartree (MCTDH) method and its generalization, the multilayer MCTDH (ML-MCTDH), result in equations of motion (EOMs) that are singular when there are virtual orbitals-the unoccupied single-particle functions-in the wave function expansion. For decades this singularity had been numerically removed by regularizing the reduced density matrix. In this Perspective we discuss our recent proposal to regularize the coefficient tensor instead, which has significant impact on both the efficiency and correctness of the EOMs in MCTDH and ML-MCTDH for challenging problems. We further demonstrate that when the system becomes large such that it is necessary to use ML-MCTDH with many layers, it is much more important to employ this new regularization scheme. We illustrate this point by studying a spin-boson model with a large bath that contains up to 100 000 modes. We show that even in the weak coupling regime the new regularization scheme is required to quickly rotate the virtual orbitals into the correct directions in Hilbert space. We argue that this situation can be common for applying a time-dependent tensor network approach to any large enough system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.