Abstract

High-resolution X-ray microtomography was used to get deeper insight into the underlying mass transport mechanisms controlling drug release from coated pellets. Sugar starter cores were layered with propranolol HCl and subsequently coated with Kollicoat SR, plasticized with 10% TEC. Importantly, synchrotron X-ray computed microtomography (SR-μCT) allowed direct, non-invasive monitoring of crack formation in the film coatings upon exposure to the release medium. Propranolol HCl, as well as very small sugar particles from the pellets' core, were expulsed through these cracks into the surrounding bulk fluid. Interestingly, SR-μCT also revealed the existence of numerous tiny, air-filled pores (varying in size and shape) in the pellet cores before exposure to the release medium. Upon water penetration into the system, the contents of the pellet cores became semi-solid/liquid. Consequently, the air-pockets became mobile and fused together. They steadily increased in size (and decreased in number). Importantly, “big” air bubbles were often located in close vicinity of a crack within the film coating. Thus, they play a potentially crucial role for the control of drug release from coated pellets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.