Abstract

In Earth’s regions accessible for living organisms (Earth’s crust, crude oil, water sanctuaries and lower atmosphere), vanadium is present in the oxidation states +III and—essentially—+IV (cationic) and +V (cationic and anionic), with the redox interchange and biochemical recycling often monitored by bacteria. Organisms having available vanadium-containing (bio)molecules with essential functions for life include marine brown algae (haloperoxidases), ascidians and fan worms, as well as terrestrial organisms, viz., nitrogen-fixing bacteria (associated with the roots of legumes), and the fly agaric mushroom. The hypohalite generated by the algal haloperoxidases in turn is involved in the emission of bromoform into the atmosphere. Nitrogen fixation (N2 ε NH4+) is a process of immanent importance for life on our planet. Other bacterial issues include the reduction of vanadate to VO2+. Medicinal applications of vanadium coordination compounds are directed towards the treatment of diabetes mellitus (vanadium complexes with hypoglycemic activity) and cancer—although boundaries are set due to side effects such as oxidative damage elicited by vanadium-induced hyperoxide formation. Physiological actions of vanadium are often invoked due to the structural and physiological similarity between vanadate and phosphate. An additional field of medicinal applications addresses the treatment of cancer, such as leukaemia, malignant melanoma and bone cancer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call