Abstract

Construction of reduced order models using the conventional quasi-steady-state (QSS) or singular perturbation approach may not yield good low frequency approximations, especially if there is not a distinct time scale separation into slow and fast subsystems. An implicit QSS technique is proposed for general nonlinear models. The resulting reduced order model is accurate to first order in the perturbation parameter and its linearization is accurate to first order in frequency. An example is included showing the application of the proposed method to model reduction on a power plant evaporator.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.