Abstract
In this paper we apply implicit two-derivative multistage time integrators to conservation laws in one and two dimensions. The one dimensional solver discretizes space with the classical discontinuous Galerkin method, and the two dimensional solver uses a hybridized discontinuous Galerkin spatial discretization for efficiency. We propose methods that permit us to construct implicit solvers using each of these spatial discretizations, wherein a chief difficulty is how to handle the higher derivatives in time. The end result is that the multiderivative time integrator allows us to obtain high-order accuracy in time while keeping the number of implicit stages at a minimum. We show numerical results validating and comparing methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.