Abstract
We study implicit multifunctions (set-valued mappings) obtained from inclusions of the form 0źM(p,x), whereM is a multifunction. Our basic implicit multifunction theorem provides an approximation for a generalized derivative of the implicit multifunction in terms of the derivative of the multifunctionM. Our primary focus is on three special cases of inclusions 0źM(p,x) which represent different kinds of generalized variational inequalities, called "variational conditions". Appropriate versions of our basic implicit multifunction theorem yield approximations for generalized derivatives of the solutions to each kind of variational condition. We characterize a well-known generalized Lipschitz property in terms of generalized derivatives, and use our implicit multifunction theorems to state sufficient conditions (and necessary in one case) for solutions of variational conditions to possess this Lipschitz, property. We apply our results to a general parameterized nonlinear programming problem, and derive a new second-order condition which guarantees that the stationary points associated with the Karush-Kuhn-Tucker conditions exhibit generalized Lipschitz continuity with respect to the parameter.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.