Abstract
The aim of this paper is to derive a numerical scheme for solving stochastic differential equations (SDEs) via Wong-Zakai approximation. One of the most important methods for solving SDEs is Milstein method, but this method is not so popular because the cost of simulating the double stochastic integrals is high. For overcoming this complexity, we present an implicit Milstein scheme based on Wong-Zakai approximation by approximating the Brownian motion with its truncated Haar expansion. The main advantages of this method lie in the fact that it preserves the convergence order and also stability region of the Milstein method while its simulation is much easier than Milstein scheme. We show the convergence rate of the method by some numerical examples.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.