Abstract
The fluid dynamic equations are discretized by a high-order spectral volume (SV) method on unstructured tetrahedral grids. We solve the steady state equations by advancing in time using a backward Euler (BE) scheme. To avoid the inversion of a large matrix we approximate BE by an implicit lower–upper symmetric Gauss–Seidel (LU-SGS) algorithm. The implicit method addresses the stiffness in the discrete Navier–Stokes equations associated with stretched meshes. The LU-SGS algorithm is then used as a smoother for a p-multigrid approach. A Von Neumann stability analysis is applied to the two-dimensional linear advection equation to determine its damping properties. The implicit LU-SGS scheme is used to solve the two-dimensional (2D) compressible laminar Navier–Stokes equations. We compute the solution of a laminar external flow over a cylinder and around an airfoil at low Mach number. We compare the convergence rates with explicit Runge–Kutta (E-RK) schemes employed as a smoother. The effects of the cell aspect ratio and the low Mach number on the convergence are investigated. With the p-multigrid method and the implicit smoother the computational time can be reduced by a factor of up to 5–10 compared with a well tuned E-RK scheme.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.