Abstract

The article considers an implicit finite-difference scheme for the Duffing equation with a derivative of a fractional variable order of the Riemann–Liouville type. The issues of stability and convergence of an implicit finite-difference scheme are considered. Test examples are given to substantiate the theoretical results. Using the Runge rule, the results of the implicit scheme are compared with the results of the explicit scheme. Phase trajectories and oscillograms for a Duffing oscillator with a fractional derivative of variable order of the Riemann–Liouville type are constructed, chaotic modes are detected using the spectrum of maximum Lyapunov exponents and Poincare sections. Q-factor surfaces, amplitude-frequency and phase-frequency characteristics are constructed for the study of forced oscillations. The results of the study showed that the implicit finite-difference scheme shows more accurate results than the explicit one.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.