Abstract
Successful epidemic modeling requires understanding the implicit feedback control strategies used by populations to modulate the spread of contagion. While such strategies can be replicated with intricate modeling assumptions, here we propose a simple model where infection dynamics are described by a three parameter feedback policy. Rather than model individuals as directly controlling the contact rate which governs the spread of disease, we model them as controlling the contact rate’s derivative, resulting in a dynamic rather than kinematic model. The feedback policy used by populations across the United States which best fits observations is proportional-derivative control, where learned parameters strongly correlate with observed interventions (e.g., vaccination rates and mobility restrictions). However, this results in a non-zero “steady-state” of case counts, implying current mitigation strategies cannot eradicate COVID-19. Hence, we suggest making implicit policies a function of cumulative cases, resulting in proportional-integral-derivative control with higher potential to eliminate COVID-19.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.