Abstract
Nonlinear parabolic functional differential equations with initial boundary conditions of the Neumann type are considered. A general class of difference methods for the problem is constructed. Theorems on the convergence of difference schemes and error estimates for approximate solutions are presented. The proof of the stability of the difference functional problem is based on a comparison technique. Nonlinear estimates of the Perron type with respect to the functional variable for given functions are used. Numerical examples are given.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.