Abstract

Previous research on the impacts of maple syrup production in the Northeastern United States has been based on correlative relationships between syrup production and average temperature. Here a simple biologically and physically-based model of sapflow potential is used to assess observed changes in sapflow across the Northeastern US from 1980 to 2006; document the correspondence between these observations and independent downscaled atmosphere ocean general circulation model (AOGCM) simulations of conditions during this period; and quantify changes in sapflow potential through 2100. The sapflow model is able to capture the spatial and temporal (in terms of the start date of sapflow) variations of sapflow that are observed across the Northeast. Likewise the AOGCM simulations reflect the mean number of sapflow days and the timing of sapflow during the 1980–2006 overlap period. Through the twenty-first century, warming winter temperatures will result in a decline in the number of sapflow days if traditional sap collection schedules are maintained. Under the A1fi emissions scenario the number of sapflow days decreases by up to 14 days. However, the changes in climate also translate the optimal timing of sap collection to earlier in the year. Across the region, the time period that maximizes the number of sapflows days becomes as much as 30 days earlier by 2100 under the A1fi emissions scenario. Provided this change is accounted for by modifying the start of the traditional sap collection schedule, there is essentially no net loss of sapflow days across the majority of the region, with a net increase of sapflow days indicated in the extreme north.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call