Abstract

During the 2014-2016 water shortage crisis, the Metropolitan Area of Sao Paulo (MASP) water supply system extracted pumping volume from the Cantareira System. Before the crisis, between 1984 and 2013, the reservoir’s average water extraction flow was 29.6 m3·s-1. During the period of pumping volume usage, the average extraction flow was 16.2 m3·s-1. Following the crisis, two new mitigation policies were implemented: a water extraction Resolution (in 2017) and a Resolution for water reallocation from another basin (in 2018). This study provides a novel investigation of the Cantareira System water crisis by assessing the mitigation policies impacts on storage level dynamics. The system storage level was evaluated using the reservoir simulation module of PDM-Cemaden hydrological model, assuming that the new policies had already been implemented prior to the crisis. A control simulation was run with observed in- and out-flow and operationally-practiced extraction flow. The storage level dynamics impacts were evaluated under 4 water mitigation policies scenarios varying the policies implementation starting date, the extraction flow range and including the water reallocation variable. Results showed that pumping volume would only need extraction during a short period (Scenarios I, III and IV), and considering the water reallocation, pumping volume extraction would not have been necessary (Scenario II). Although the pumping volume would still have been extracted during a short period, water shortage impact would have been lessened, had the policies been already implemented before the crisis. The water mitigation policies implementation supports the reservoirs storage management but does not guarantee that MASP water demand is fully met. Therefore, in order to effectively improve water security, further policies and practices to reduce water demand and enhance supply should be considered.

Highlights

  • Drought is a complex natural hazard that impacts ecosystems and human activities in several ways, mainly associated with hydrological impacts

  • Cantareira System level storage under Scenario II showed that pumping volume utilization would not have been necessary during the 2014-2016 water crisis

  • The minimum estimated storage level would have been reached in January 2015, representing 3.9% (38 hm3) of the active storage. This more optimistic storage dynamics is attributed to water reallocation, which would contribute to 243 hm3, equivalent to 25% of the active volume, during the period between July 2014 to December 2015

Read more

Summary

Introduction

Drought is a complex natural hazard that impacts ecosystems and human activities in several ways, mainly associated with hydrological impacts. Hydrological droughts (HD) can be defined as the low streamflow, low inflow levels, and reduced available groundwater [1]. The often unnoticed onset and slow development of HD converges to devastating impacts on agriculture, hydroelectric power generation, water supply, public health, navigation, and recreation. Important communication campaigns were put into place which led to a significant water demand reduction and to the setup of mechanisms for public participation for future water management. HD has been gaining attention in the last decades, one further step is to integrate science, management, and policy. A strong interface between policymakers and scientists is necessary to ensure that research better addresses the drought impacts management

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.