Abstract
A number of studies have reported on the unusual pharmacological behavior of type I antiestrogens, such as tamoxifen. These agents display mixed agonist/antagonist activity in a dose-, cell-, and tissue-specific manner. Consequently, many efforts have been made to develop so-called 'pure' antiestrogens that lack mixed agonist/antagonist activity. The recent report of the structure of estrogen receptor (ER) beta with a second molecule of 4-hydroxytamoxifen (HT) bound in the coactivator-binding surface of the ligand-binding domain (LBD) represents the first direct example of a second ER ligand-binding site and provides insight into the possible origin of mixed agonist/antagonist activity of type I antiestrogens. In this review, we summarize the biological reports leading up to the structural conformation of a second ER ligand-binding site, compare the ERbeta LBD structure bound with two HT molecules to other ER structures, and discuss the potential for small molecular inhibitors designed to directly inhibit ER-coactivator and, more generally, nuclear receptor (NR)-coactivator interactions. The studies support a departure from the traditional paradigm of drug targeting to the ligand-binding site, to that of a rational approach targeting a functionally important surface, namely the NR coactivator-binding (activation function-2) surface. Furthermore, we provide evidence supporting a reevaluation of the strict interpretation of the agonist/antagonist state with respect to the position of helix 12 in the NR LBD.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.