Abstract
Abstract We show that derivation of Friedmann’s equations from the Einstein–Hilbert action, paying attention to the requirements of isotropy and homogeneity during the variation, leads to a different interpretation of pressure than what is typically adopted. Our derivation follows if we assume that the unapproximated metric and Einstein tensor have convergent perturbation series representations on a sufficiently large Robertson–Walker coordinate patch. We find the source necessarily averages all pressures, everywhere, including the interiors of compact objects. We demonstrate that our considerations apply (on appropriately restricted spacetime domains) to the Kerr solution, the Schwarzschild constant-density sphere, and the static de-Sitter sphere. From conservation of stress–energy, it follows that material contributing to the averaged pressure must shift locally in energy. We show that these cosmological energy shifts are entirely negligible for non-relativistic material. In relativistic material, however, the effect can be significant. We comment on the implications of this study for the dark energy problem.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.