Abstract

A deep geologic repository (DGR) situated on the Canadian Shield will be subject to long-term climate change that will markedly alter surface conditions as a result of glaciation and permafrost penetration. Systematic, two-dimensional and three-dimensional coupled thermal–hydraulic–mechanical finite-element simulations with varying degrees of coupling, including depth-dependent salinity (represented as a change in groundwater density) and temperature-dependent density and viscosity, were undertaken to address the implications of glaciation on groundwater flow system dynamics as it could affect DGR performance. The modelling domain consisted of a 1.6-km deep sub-regional scale (≈100 km2) fractured Shield flow system. Initial and transient thermal, hydraulic and mechanical boundary conditions were developed from two realizations of the University of Toronto Glacial Systems Model of the last Laurentide glaciation. Results indicate that during the glacial loading/unloading cycle, for this particular conceptual model, there is limited penetration of glacial meltwaters to depth and small residual anomalous hydraulic head. During glacial coverage, the mechanical factor of safety increases in the moderately fractured and sparsely fractured rock mass, but principal effective stress reorientation also occurs. Given the assumed nonglacial in situ state of stress and mechanical properties, the fracture zones were predicted to be less stable under glacial conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call