Abstract

Abstract: In terrestrial and aquatic ecosystems, organisms directly affect nutrient storage and cycling by sequestering nutrients via growth and remineralizing nutrients via excretion and egestion. Therefore, species introductions and extirpations can profoundly affect nutrient storage and remineralization rates, and present a challenge for conserving ecosystem function in fresh waters. The literature of consumer-driven nutrient dynamics is growing rapidly, but studies of consumer effects on nutrient storage and remineralization across species and among ecosystems are limited. We compared the effects of 3 grazing taxa, nonnative armored catfish in Mexican streams, native mussels in Oklahoma streams, and native tadpoles in Panamanian streams, on nutrient storage and remineralization. We examined interactions among organismal stoichiometry and biomass, nutrient storage, remineralization rates, and ecosystem size across these 3 groups following species decline (tadpoles and mussels) or introduction (armored ...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call