Abstract

Changes in density-independent mortality can alter the spatial extent of populations through patch extinction and colonization, and spatial contraction may alter population productivity and compensatory capacity. Here, we analyze a time series of steelhead (Oncorhynchus mykiss) abundance and examine the hypothesis that spatial contraction can decrease compensatory capacity. Over the last 20 years, steelhead in the Keogh River have declined by an order of magnitude because of a period of poor smolt-to-adult survival. Low abundance has been associated with more depressed production of out-migrating smolts than would be expected based on traditional models of compensatory dynamics. Patterns of juvenile density over time show changes in the spatial distribution of the population. We developed a spatially explicit population model to explore spatial structure and juvenile recruitment under varying marine survival. Results suggest that spatial contraction during a period of poor marine survival can strengthen density-dependent population regulation, reducing smolt production at the watershed scale. Our results highlight that spatial contraction can alter the fundamental density-dependent relationships that define population dynamics, recovery trajectories, and sustainable harvest levels of spatially structured populations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.