Abstract

Small, unmanned aerial systems (sUAS) for remote sensing represent a relatively new and growing technology to support decisions for agricultural operations. The size and power limitations of these systems present challenges for the weight, size, and capability of the sensors that can be carried, as well as the geographical coverage that is possible. These factors, together with a lack of standards for sensor technology, its deployment, and data analysis, lead to uncertainties in data quality that can be difficult to detect or characterize. These, in turn, limit comparability between data from different sources and, more importantly, imply limits on the analyses that can be accomplished with the data that are acquired with sUAS. This paper offers a simple statistical examination of the implications toward information products of an array of sensor data uncertainty issues. The analysis relies upon high-resolution data collected in 2016 over a commercial vineyard, located near Lodi, California, for the USD A Agricultural Research Service Grape Remote sensing Atmospheric Profile and Evapotranspiration experiment (GRAPEX) Program. A Monte Carlo analysis is offered of how uncertainty in sensor spectral response and/or orthorectification accuracy can affect the estimation of information products of potential interest to growers, as illustrated in the form of common vegetation indices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.