Abstract

A comparison of polar solar wind proton flux upper limits derived using a coronal density model, with Lyman alpha measurements of the length of the neutral H tail of comet Bennet at high latitudes, shows that either extended heating beyond 2 solar radii is necessary some of the time or that the model's polar densities are too low. Whichever possibility is the case, the fact that the solar wind particle flux does not appear to decrease with increasing latitude indicates that the heavy element content of the high latitude wind may be similar to that observed in the ecliptic. It was then shown that solar wind heavy ion observations at high latitudes allow a determination of the electron temperature at heights which bracket the nominal location of the coronal temperature maximum thus providing information concerning the magnitude and extent of mechanical dissipation in the intermediate corona.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.