Abstract

Laboratory experiments sensitive to the equation of state of neutron rich matter in the vicinity of nuclear saturation density provide the first rung in a "density ladder" that connects terrestrial experiments to astronomical observations. In this context, the neutron skin thickness of ^{208}Pb (R_{skin}^{208}) provides a stringent laboratory constraint on the density dependence of the symmetry energy. In turn, an improved value of R_{skin}^{208} has been reported recently by the PREX collaboration. Exploiting the strong correlation between R_{skin}^{208} and the slope of the symmetry energy L within a specific class of relativistic energy density functionals, we report a value of L=(106±37) MeV-which systematically overestimates current limits based on both theoretical approaches and experimental measurements. The impact of such a stiff symmetry energy on some critical neutron-star observables is also examined.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call