Abstract

Some areas of radiation genetics still contain gaps of knowledge, as these studies lost priority when the emphasis in experimental mutagenesis shifted toward the effect of chemical mutagens. This shifted emphasis, however, was accompanied by the development of a better understanding of genetic injury at the molecular level. At the opposite end of the spectrum, more attention was paid to estimates of the direct health costs of the genetic burden in humans and the capacity to make prenatal diagnoses, and to consider reasonable clinical and biochemical intervention. Although, as yet, there are no completely reliable direct methods to estimate the radiation-induced mutation rate in humans, we have come to rely upon data from experimental animals to predict event frequency and extrapolate from these data to predict human health consequences. What will the future offer? Certainly, we should develop a better understanding of molecular genetic damage and, possibly, a better extrapolation model for predicting mutation rate, but many aspects of expected health consequences may remain elusive. We still may have to rely upon (1) an inadequate human population genetic baseline, (2) sometimes arguable perceptions of man-mouse extrapolation models, (3) changing perceptions of gene-environment interactions, and (4) changing levels of short-term selection pressure against detrimental mutations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.