Abstract

To assess the feasibility and implications of imputing race and ethnicity for quality and utilization measurement in Medicaid. 2017 Oregon Medicaid claims from the Oregon Health Authority and electronic health records (EHR) from OCHIN, a clinical data research network, were used. We cross-sectionally assessed Hispanic-White, Black-White, and Asian-White disparities in 22 quality and utilization measures, comparing self-reported race and ethnicity to imputed values from the Bayesian Improved Surname Geocoding (BISG) algorithm. Race and ethnicity were obtained from self-reported data and imputed using BISG. 42.5%/4.9% of claims/EHR were missing self-reported data; BISG estimates were available for >99% of each and had good concordance (0.87-0.95) with Asian, Black, Hispanic, and White self-report. All estimated racial and ethnic disparities were statistically similar in self-reported and imputed EHR-based measures. However, within claims, BISG estimates and incomplete self-reported data yielded substantially different disparities in almost half of the measures, with BISG-based Black-White disparities generally larger than self-reported race and ethnicity data. BISG imputation methods are feasible for Medicaid claims data and reduced missingness to <1%. Disparities may be larger than what is estimated using self-reported data with high rates of missingness.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.