Abstract

Seasonal influenza A viruses of humans evolve rapidly due to strong selection pressures from host immune responses, principally on the hemagglutinin (HA) viral surface protein. Based on mouse transmission experiments, a proposed mechanism for immune evasion consists of increased avidity to host cellular receptors, mediated by electrostatic charge interactions with negatively charged cell surfaces. In support of this, the HA charge of the globally circulating H3N2 has increased over time since its pandemic. However, the same trend was not seen in H1N1 HA sequences. This is counter-intuitive, since immune escape due to increased avidity (due itself to an increase in charge) was determined experimentally. Here, we explore whether patterns of local charge of H1N1 HA can explain this discrepancy and thus further associate electrostatic charge with immune escape and viral evolutionary dynamics. Measures of site-wise functional selection and expected charge computed from deep mutational scan data on an early H1N1 HA yield a striking division of residues into three groups, separated by charge. We then explored evolutionary dynamics of these groups from 1918 to 2008. In particular, one group increases in net charge over time and consists of sites that are evolving the fastest, that are closest to the receptor binding site (RBS), and that are exposed to solvent (i.e., on the surface). By contrast, another group decreases in net charge and consists of sites that are further away from the RBS and evolving slower, but also exposed to solvent. The last group consists of those sites in the HA core, with no change in net charge and that evolve very slowly. Thus, there is a group of residues that follows the same trend as seen for the entire H3N2 HA. It is possible that the H1N1 HA is under other biophysical constraints that result in compensatory decreases in charge elsewhere on the protein. Our results implicate localized charge in HA interactions with host cells, and highlight how deep mutational scan data can inform evolutionary hypotheses.

Highlights

  • Influenza A viruses (IAVs) are responsible for a major burden of disease in human populations [3]

  • Retrospective sequence analyses from a previous study confirmed that the HA of circulating global H3N2 has increased in net charge, yet surprisingly, that of H1N1 has not varied significantly

  • How is a stable net charge related to local patterns of H1N1 HA charge in response to selection? To elucidate the role of local electrostatic charge in host-virus interactions, we investigate characteristics of local charge on the H1N1 HA using functional data from deep mutational scan experiments

Read more

Summary

Introduction

Influenza A viruses (IAVs) are responsible for a major burden of disease in human populations [3]. HAs of IAVs form two monophyletic clades, known as group 1 and 2, and each group contains multiple subtypes, including the HA of H1N1 and H3N2, respectively [5]. Strong selective pressures from the host immune system, combined with error-prone RNA polymerases, lead to seasonal variants of a given subtype emerging through “drift” [6]. These yearly epidemics contrast to pandemics caused by a “shift” that occurs when IAVs of different animal species reassort, resulting in viruses with antigens to which the human population has little prior immunity [7]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call