Abstract

BackgroundIncreasing pyrethroid resistance has been an undesirable correlate of the rapid increase in coverage of insecticide-treated nets (ITNs) since 2000. Whilst monitoring of resistance levels has increased markedly over this period, longitudinal monitoring is still lacking, meaning the temporal and spatial dynamics of phenotypic resistance in the context of increasing ITN coverage are unclear.MethodsAs part of a large WHO-co-ordinated epidemiological study investigating the impact of resistance on malaria infection, longitudinal monitoring of phenotypic resistance to pyrethroids was undertaken in 290 clusters across Benin, Cameroon, India, Kenya and Sudan. Mortality in response to pyrethroids in the major anopheline vectors in each location was recorded during consecutive years using standard WHO test procedures. Trends in mosquito mortality were examined using generalised linear mixed-effect models.ResultsInsecticide resistance (using the WHO definition of mortality < 90%) was detected in clusters in all countries across the study period. The highest mosquito mortality (lowest resistance frequency) was consistently reported from India, in an area where ITNs had only recently been introduced. Substantial temporal and spatial variation was evident in mortality measures in all countries. Overall, a trend of decreasing mosquito mortality (increasing resistance frequency) was recorded (Odds Ratio per year: 0.79 per year (95% CI: 0.79–0.81, P < 0.001). There was also evidence that higher net usage was associated with lower mosquito mortality in some countries.DiscussionPyrethroid resistance increased over the study duration in four out of five countries. Insecticide-based vector control may be compromised as a result of ever higher resistance frequencies.

Highlights

  • Increasing pyrethroid resistance has been an undesirable correlate of the rapid increase in coverage of insecticide-treated nets (ITNs) since 2000

  • We describe temporal and spatial trends in insecticide resistance of the main malaria vector species from across the five study countries

  • This study demonstrated increasing frequency of resistance to pyrethroids in malaria vectors from 4 out of 5 study countries

Read more

Summary

Introduction

Increasing pyrethroid resistance has been an undesirable correlate of the rapid increase in coverage of insecticide-treated nets (ITNs) since 2000. Vector control using indoor residual spraying (IRS) and insecticide-treated nets (ITNs) are core strategies for malaria control and elimination. The proportion of people in sub-Saharan Africa sleeping under a net increased from 30 to 54% between 2010 and 2016, whilst in 2016 an estimated 2.9% of the at-risk population was covered by IRS globally [1]. The increased coverage of vector control is estimated to have been a major contributor to the documented 62% decline in malaria mortality between 2000–2015 [2, 3]. Between 2015 and 2016, data suggest that malaria mortality have remained the same in the WHO regions of Southeast Asia, the Western Pacific and Africa, and possibly increased in the Eastern Mediterranean and the Americas [1]. There are justified concerns about the emergence and spread of insecticide resistance and the impact this may have on the continued effectiveness of insecticide-based interventions [1, 4]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.