Abstract

Animal by-products may be increasingly relied upon to satisfy nutritional requirements of salmonids and other fed aquaculture species as demand for fish meal outpaces supply. Previous studies of aquaculture supply chains have included either no animal by-product inputs or small inputs of poultry by-products. Australian Atlantic salmon production includes high use of feed inputs derived from poultry and mammalian by-products and provides a case study to explore the environmental implications and methodological challenges associated with these inputs. Life cycle assessment was carried out on a vertically integrated salmon production system in Tasmania, representing approximately 40% of Australian Atlantic salmon production. The system included feed production, smolt/juvenile production, farm grow-out, processing and packaging, and distribution of head-on gutted salmon to market. Impacts from animal production were allocated to by-products on a gross chemical energy basis. Scenario analyses were conducted to determine the extent to which changes in feed conversion ratio, feed composition, and other variables affect results. Sensitivity analysis was carried out on the allocation method for fishery and animal by-products. Environmental impacts associated with Tasmanian salmon fed high quantities of animal by-products were markedly higher than those of previously assessed systems. All impacts were driven by feed production with the exception of eutrophication potential, which was driven equally by feed production and nutrient loss during grow-out. Animal by-products accounted for the majority of all impacts from feed production. Adopting a feed composition without animal by-products would result in dramatic improvements, including a 70% decrease in greenhouse gas emissions. Allocation choice had a clear effect on results, with biophysical allocation methods placing much more burden from animal production on fed systems than economic or no-impact allocation methods. The use of animal by-product inputs in aquaculture feeds has a substantial effect on the environmental profile of farmed salmon products. The magnitude of this effect is dependent on the allocation method chosen for the treatment of products and by-products in upstream systems. The high impact of such systems recognizes the environmental cost of future aquaculture production that may rely more on intensive and high-impact animal production inputs as more efficient fishery inputs become increasingly limited relative to demand.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call