Abstract

Simple SummaryRecently, the interactions between microbiota and the host have been reported to induce the onset and progression of human cancer via epithelial–mesenchymal transition (EMT). In contrast, some microorganisms can protect against cancer growth, indicating an anticancer therapeutic action of such microbiota. In the review, we summarize findings from the literature, exploring the underlying mechanisms by which pathogenic microorganisms induce EMT. We also highlight the potential of exploiting these complex interactions for developing new biological therapies.Advancement in the development of molecular sequencing platforms has identified infectious bacteria or viruses that trigger the dysregulation of a set of genes inducing the epithelial–mesenchymal transition (EMT) event. EMT is essential for embryogenesis, wound repair, and organ development; meanwhile, during carcinogenesis, initiation of the EMT can promote cancer progression and metastasis. Recent studies have reported that interactions between the host and dysbiotic microbiota in different tissues and organs, such as the oral and nasal cavities, esophagus, stomach, gut, skin, and the reproductive tract, may provoke EMT. On the other hand, it is revealed that certain microorganisms display a protective role against cancer growth, indicative of possible therapeutic function. In this review, we summarize recent findings elucidating the underlying mechanisms of pathogenic microorganisms, especially the microbiota, in eliciting crucial regulator genes that induce EMT. Such an approach may help explain cancer progression and pave the way for developing novel preventive and therapeutic strategies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.