Abstract

In this work, we designed and characterized a passive structural wing actuation setup that was able to realistically mimic the flapping and pitching kinematics of dragonflies. In this setup, an inelastic string limited the wing pitch that may be sufficiently simple for practical micro air vehicle applications. To further evaluate the dominance of inertial passive and active muscle-controlled pitch actuation in dragonfly flight, the flow fields and pitching angle variations of the naturally actuated wing of a tethered dragonfly were compared with that of the same wing artificially actuated via a proposed passive mechanism. We found that passive rotation characterizes most of the forewing flapping cycle except the upstroke reversal where the dragonfly uses its muscle movement to accelerate its forewing rotation. The measured flow fields show that accelerated wing rotation at the upstroke reversal will result in a stronger leading edge vortex during the downstroke, the additional force from which is estimated to account for 4.3% of the total cycle averaged force generated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call