Abstract

Abstract. The coastal Gulf of Mexico (GOM) and coastal sea off the Korean Peninsula (CSK) both suffer from human-induced eutrophication. We used a nitrogen (N) mass balance model in two different regions with different nitrogen input sources to estimate organic carbon fluxes and predict future carbon fluxes under different model scenarios. The coastal GOM receives nitrogen predominantly from the Mississippi and Atchafalaya rivers and atmospheric nitrogen deposition is only a minor component in this region. In the CSK, groundwater and atmospheric nitrogen deposition are more important controlling factors. Our model includes the fluxes of nitrogen to the ocean from the atmosphere, groundwater and rivers, based on observational and literature data, and identifies three zones (brown, green and blue waters) in the coastal GOM and CSK with different productivity and carbon fluxes. Based on our model results, the potential primary production rate in the inner (brown water) zone are over 2 gC m−2 d−1 (GOM) and 1.5 gC m−2 d−1 (CSK). In the middle (green water) zone, potential production is from 0.1 to 2 (GOM) and 0.3 to 1.5 gC m−2 d−1 (CSK). In the offshore (blue water) zone, productivity is less than 0.1 (GOM) and 0.3 (CSK) gC m−2 d−1. Through our model scenario results, overall oxygen demand in the GOM will increase approximately 21 % if we fail to reduce riverine N input, likely increasing considerably the area affected by hypoxia. Comparing the results from the USA with those from the Korean Peninsula shows the importance of considering both riverine and atmospheric inputs of nitrogen. This has direct implications for investigating how changes in energy technologies can lead to changes in the production of various atmospheric contaminants that affect air quality, climate and the health of local populations.

Highlights

  • Industrial expansion and anthropogenic emissions are major factors leading to increased coastal productivity and potential eutrophication (Sigman and Hain, 2012)

  • The model suggests that the three-zone theory of RC02 can be applied in the northern Gulf of Mexico (GOM) and in the coastal sea off the Korean Peninsula (CSK) region and that three zones can be distinguished based on their nutrient concentration

  • We believe that using our N mass balance model to separate different zones based on RC02 may be appropriate for large-scale regions like the GOM and CSK and at small scales such as river or estuary systems

Read more

Summary

Introduction

Industrial expansion and anthropogenic emissions are major factors leading to increased coastal productivity and potential eutrophication (Sigman and Hain, 2012). Coastal primary production is controlled largely by nitrogen (N) and phosphorus (P), and the relative supply of each determines which element limits production (Paerl, 2009); freshwater inputs and the distance from sources such as river mouths are important (Dodds and Smith, 2016). Changes in nutrient loading from airborne, river-borne and groundwater sources can affect which element limits coastal productivity (Sigman and Hain, 2012). Several studies have shown that increasing atmospheric nitrogen deposition (AN-D) is contributing to ocean production globally, including to eutrophication, and is potentially of future importance in the GOM Kim et al (2011), Published by Copernicus Publications on behalf of the European Geosciences Union

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call