Abstract

The effect of insect biological control agents on invasive plant populations can vary spatially, and spatial variation in climate may drive regional variation in herbivory, and thus biocontrol efficacy. Within host plant populations, local plant abundance can also be affected by the spatial distribution of herbivores, but whether local patterns persist at larger scales is less well understood. We examined how infestation and damage of the stem-mining weevil Mecinus janthiniformis, a specialist biocontrol agent of the invasive plant Linaria dalmatica, varied within and among populations across the northern edge of the range in North America. We quantified weevil and invasive plant densities, as well as plant fecundity, stem diameter and height across sites spanning an area of ∼39,000 km2 in British Columbia, Canada. We found that specialist weevils did not respond to host plant density within sites across the study region. Instead, weevil attack and load were most sensitive to among-site variability in climate, with stems at warmer sites having four times as many weevils compared to stems at cooler sites. Weevils also reduced plant fecundity more at warmer sites, when controlled for plant size (stem diameter) with larger effects of weevils in thicker stems, indicating that L. dalmatica suppression is highest in warmer locations where weevils are more abundant and environmental conditions more favorable. Our results suggest that, with climate change, the efficacy of biocontrol for L. dalmatica will improve across the northern edge of the range. We recommend that at cooler sites, where biocontrols are less prevalent and effects on plant fecundity are weaker, alternative management strategies are necessary at this time. Across invasive plant species more generally, future studies that establish the role of climate in variability in biocontrol efficacy long after introduction can improve management of invasive plants under climate change.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.