Abstract

We addressed the issue of the absence of far-infrared signatures pertaining to charge ordering in the published far-infrared reflectivity data of La2−xSrxCuO4 single crystals while other experimental probes reveal that charge ordering is a hallmark of superconducting cuprates. Through direct comparison of the far-infrared data reported by various groups side by side and also with the Raman scattering data, we found that the inconsistencies stem from the failure in capturing delicate spectral features embedded in the close-to-perfect ab-plane far-infrared reflectivity of La2−xSrxCuO4 single crystals by misidentifying the reflectivity as the Drude-like metallic reflectivity. The analysis of the close-to-true reflectivity data reveals that only a small fraction (<3%) of the total doping-induced charge carriers (electrons) are itinerant on the electron lattice made up with the rest of the electrons (>97%) at all doping levels up to 16%. We conclude that the far-infrared reflectivity study is far from being ready to construct a coherent picture of the ubiquitous charge ordering phenomenon and its relationship with the high Tc superconductivity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call