Abstract

We report on the characterization of a carbon nanotube (CNT) based thermal interface material grown by chemical vapor deposition on catalysts formed by a micelle templating method. The micelle templating method allows for controllable diameter and density in the CNT array that is not easily achieved by other techniques. In this work, we characterize the activity of the catalyst to be at least 10% by a root-counting method. This activity differs from that reported in other works, although the disparity may be largely explained by understanding the approximations in other characterizations. Characterization of thermal interface resistance shows nonmonotonic dependencies on length and catalyst/nanotube density, with optimum values of approximately 0.08 K cm2/W. This exceeds that characterized by others in the literature for a single CNT film interface and state of the art thermal greases. Dependencies on length and density are explained by considering how the compliancy of the CNT array is impacted by these variables.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.