Abstract

Cardiovascular disease (CVD) risk in India is currently assessed using the World Health Organization/International Society for Hypertension (WHO/ISH) risk prediction charts since no population-specific models exist. The WHO/ISH risk prediction charts have two versions—one with total cholesterol as a predictor (the high information (HI) model) and the other without (the low information (LI) model). However, information on the WHO/ISH risk prediction charts including guidance on which version to use and when, as well as relative performance of the LI and HI models, is limited. This article aims to, firstly, quantify the relative performance of the LI and HI WHO/ISH risk prediction (for WHO-South East Asian Region D) using data from rural India. Secondly, we propose a pre-screening (simplified) point-of-care (POC) test to identify patients who are likely to benefit from a total cholesterol (TC) test, and subsequently when the LI model is preferential to HI model. Analysis was performed using cross-sectional data from rural Andhra Pradesh collected in 2005 with recorded blood cholesterol measurements (N = 1066). CVD risk was computed using both LI and HI models, and high risk individuals who needed treatment(T HR) were subsequently identified based on clinical guidelines. Model development for the POC assessment of a TC test was performed through three machine learning techniques: Support Vector Machine (SVM), Regularised Logistic Regression (RLR), and Random Forests (RF) along with a feature selection process. Disagreement in CVD risk predicted by LI and HI WHO/ISH models was 14.5% (n = 155; p<0.01) overall and comprised 36 clinically relevant T HR patients (31% of patients identified as T HR by using either model). Using two patient-specific parameters (age, systolic blood pressure), our POC assessment can pre-determine the benefit of TC testing and choose the appropriate risk model (out-of-sample AUCs:RF-0.85,SVM-0.84,RLR:0.82 and maximum sensitivity-98%). The identification of patients benefitting from a TC test for CVD risk stratification can aid planning for resource-allocation and save costs for large-scale screening programmes.

Highlights

  • The prevalence of cardiovascular disease (CVD) is increasing in the developing world [1]

  • The CVD risk prediction charts developed by the World Health Organization (WHO) and International Society for Hypertension (ISH) [3] is the only algorithm in the Indian subcontinent prescribed for CVD risk assessment by respective national guidelines [4]

  • Statistical significance testing was performed using the non-parametric Friedman’s test, which is suitable for ordinal data

Read more

Summary

Introduction

The prevalence of cardiovascular disease (CVD) is increasing in the developing world [1]. The Indian subcontinent accounts for the highest rates of CVD globally [2]. The CVD risk prediction charts developed by the World Health Organization (WHO) and International Society for Hypertension (ISH) [3] is the only algorithm in the Indian subcontinent prescribed for CVD risk assessment by respective national guidelines [4]. In India, interventions for CVD and associated risk factors like diabetes are through the National Programme for Prevention and Control of Cancer, Diabetes, Cardiovascular diseases and Stroke (NPCDCS) that prescribes the WHO/ISH South East Asian Region -D (SEAR-D) charts for CVD risk assessment [5]. SEAR-D countries include Bangladesh, Bhutan, Democratic People’s Republic of Korea, India, Maldives, Myanmar, and Nepal [3]

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.