Abstract

Minimizing bromate formation by adding H2O2 is one major option for bromide-containing source water when applying ozone in drinking water. However, difference in background water quality can have a significant influence on bromate depression. In this study, three bromide-bearing source waters (YZ, HR and HP) were selected to investigate bromate depression during the H2O2-ozonation process. The results showed that there was strong correlation between bromate formation and molecular ozone consumption during ozonation process for the three waters. Compared to YZ and HR, ozone was consumed quickly within about 10 min for HP water, inducing lower bromate formation during ozonation process. In the initial step of bromide oxidation, molecular ozone oxidation was responsible for more than 80% of oxidation, much higher than that by hydroxyl radicals. Specifically, 94% of the oxidation of bromide occurred with ozone for YZ water, which might be attributed to the low concentration of organic matter in the water. The residual molecular ozone would be a restrictive factor and affect the bromate formation significantly. For YZ and HP water, as H2O2/O3 (g/g) increased to 0.5, the ozone decomposition rate increased 61 times and 7.2 times respectively, which resulted in difference in bromate depression performance when applying H2O2. Humic acid and tyrosine in water were confirmed to have effects on bromate formation and depression after H2O2 addition. This study could elucidate the different bromate depression effects occurring in different source waters when adding H2O2, which will provide an informative guide for bromate control in drinking water treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.