Abstract

ABSTRACT We show that the combined effect of cosmic magnetic field and a possible non-standard interaction between baryons and dark matter (DM) has interesting consequences on the thermal Sunyaev−Zel’dovich (tSZ) effect depending on the temperature and the ionization state of the intergalactic medium. The drag force between the baryons and DM due to the relative velocity between them, and their temperature difference results in heat transfer between these two species. At the same time, the ambipolar diffusion and the decaying magnetic turbulence tends to heat up the baryons. This interplay of these two processes give rise to different evolution histories of the thermal and ionization state of the universe and hence influences the cosmic microwave background (CMB) spectrum at small scales through the tSZ effect. In this work, we have computed the evolution of the temperature, ionization fraction, and the y-parameter of the CMB for different strengths of the magnetic field and the interaction cross-section. We note that the y-parameter can be significantly enhanced with the inclusion of magnetic field and baryon–DM interaction as compared to the case when these are absent. The enhancement depends on the strength of the magnetic field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.