Abstract

Vascularized composite allotransplantation is a reconstructive option after severe injury but is fraught with complications, including transplant rejection due to major histocompatibility complex mismatch in the context of allogeneic transplant, which in turn is due to altered immuno-inflammation secondary to transplant. The immunosuppressant tacrolimus can prevent rejection. Because tacrolimus is metabolized predominantly by the gut, this immunosuppressant alters the gut microbiome in multiple ways, thereby possibly affecting immunoinflammation. We performed either allogeneic or syngeneic transplant with or without tacrolimus in rats. We quantified protein-level inflammatory mediators in the skin, muscle, and plasma and assessed the diversity of the gut microbiome through 16S RNA analysis at several timepoints over 31 days posttransplant. Statistical analysis highlighted a complex interaction between major histocompatibility complex and tacrolimus therapy on the relative diversity of the microbiome. Time-interval principal component analysis indicated numerous significant differences in the tissue characteristics of inflammation and gut microbiome that varied over time and across experimental conditions. Classification and regression tree analysis suggested that both inflammatory mediators in specific tissues and changes in the gut microbiome are useful in characterizing the temporal dynamics of posttransplant inflammation. Dynamic network analysis highlighted unique changes in Methanosphaera that were correlated with Peptococcusin allogeneic transplants with and without tacrolimus versus Prevotella in syngeneic transplant with tacrolimus, suggesting that alterations in Methanosphaera might be a biomarker of vascularized composite allotransplant rejection. Our results suggest a complex interaction among major histocompatibility complex, local and systemic immuno-inflammation, and tacrolimus therapy and highlight the potential for novel insights into vascularized composite allotransplant from computational approaches.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.