Abstract

The measurement of sin 2β is discussed within and beyond the standard model. In the presence of new physics, the angle β extracted from the global fit (denoted by [Formula: see text]) and the one extracted from B→J/ψKS(denoted by βJ/ψ) are in general all different from the "true" angle β which is the weak phase of CKM matrix element [Formula: see text]. Possible new physics effects on the ratio [Formula: see text] is studied and parametrized in a most general form. It is shown that the ratio Rβmay provide a useful tool in probing new physics. The experimental value of Rβis obtained through an update of the global fit of the unitarity triangle with the latest data and found to be less than unity at 1σ level. The new physics effects on Rβfrom the models with minimum flavor violation (MFV) and the standard model with two-Higgs-doublet (S2HDM) are studied in detail. It is found that the MFV models seem to give a relative large value Rβ≥1. With the current data, this may indicate that this kind of new physics may be disfavored and alternative new physics with additional phases appears more relevant. As an illustration for models with additional phase beyond CKM phase, the S2HDM effects on Rβare studied and found to be easily coincide with the data due to the flavor changing neutral Higgs interaction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.